
Using Answer Set Programming to model multi-agent
scenarios involving agents’ knowledge about other’s

knowledge

Chitta Baral, Gregory Gelfond
Department of Computer Science

Arizona State University
Tempe, AZ 85281, USA.

chitta|ggelfond@asu.edu

Tran Cao Son, Enrico Pontelli
Department of Computer Science

New Mexico State University
Las Cruces, NM 88003, USA

epontell|tson@cs.nmsu.edu

ABSTRACT
One of the most challenging aspects of reasoning, planning,
and acting in a multi-agent domain is reasoning about what
the agents know about the knowledge of their fellows, and to
take it into account when planning and acting. In the past
this has been done using modal and dynamic epistemic log-
ics. In this paper we explore the use of answer set program-
ming (ASP), and reasoning about action techniques for this
purpose. These approaches present a number of theoretical
and practical advantages. From the theoretical perspective,
ASP’s property of non-monotonicity (and several other fea-
tures) allow us to express causality in an elegant fashion.
From the practical perspective, recent implementations of
ASP solvers have become very efficient, outperforming sev-
eral other systems in recent SAT competitions. Finally, the
use of ASP and reasoning about action techniques allows
for the adaptation of a large body of research developed for
single-agent to multi-agent domains. We begin our discus-
sion by showing how ASP can be used to find Kripke models
of a modal theory. We then illustrate how both the muddy
children, and the sum-and-product problems can be repre-
sented and solved using these concepts. We describe and
implement a new kind of action, which we call “ask-and-
truthfully-answer,” and show how this action brings forth a
new dimension to the muddy children problem.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

General Terms
Experimentation, Theory

Keywords
Answer set programming, reasoning about actions

1. INTRODUCTION AND MOTIVATION
Cite as: Using Answer Set Programming to model multi-agent scenar-
ios involving agents’ knowledge about other’s knowledge, C. Baral et al.,
Proc. of 9th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2010), van der Hoek, Kaminka, Lespérance,
Luck and Sen (eds.), May, 10–14, 2010, Toronto, Canada, pp.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Reasoning about the actions of an agent and the associ-
ated frame problem has been an important challenge from
the early days of AI. The main issue there was to succinctly
represent effects of actions on the world as well as the de-
fault that the value of a fluent does not change unless it is
affected by an action. This becomes more complicated when
certain fluents are related to each other (possibly through
causal connections), and when actions are not limited to just
world-changing actions but may include sensing actions.

During the last two decades most of these problems have
been adequately solved with respect to domains that assume
a single agent interacting with the environment. The lan-
guage of answer set programming (ASP), which is a spec-
ification language as well as an implementation language,
and which has a non-standard connective ← that has causal
connotations, played an important role in the solutions, as
well as in specifying, and encoding various reasoning about
action tasks, such as prediction, planning, explaining obser-
vations and diagnosis.

Relatively little influenced by the above1, there has also
been significant progress in formulating and implementing
multi-agent systems. In a multi-agent scenario, the most
challenging aspects of reasoning, planning, and acting in a
multi-agent domain are reasoning about what the agents
know about the knowledge of other agents in the domain,
and taking it into account when planning and acting. In the
past this has been done using general logics such as modal [5]
and dynamic epistemic logics [15, 1, 7, 14], and specific logics
such as the logic of public announcements [2]. In this paper
we use ASP and other reasoning about action techniques for
reasoning about agent’s knowledge about other agents.

One immediate question is what does this buy us?
What follows are some of the direct, and indirect implica-

tions of our approach.

(i) We are able to use ASP explicitly to construct the
initial Kripke structure. This is important in planning
where one needs to start with an initial “state” and
determine a sequence of actions that will take it to a
given “state”, or lead to a desired trajectory. In most
other works, the initial Kripke state is shown [5] but
it is not discussed how exactly it was obtained.

(ii) Besides encoding the traditional formulation of the
“Muddy Children Problem” where the children’s an-
swers are recorded as observations, we are able to en-
code a new kind of action which we call “ask-and-

1There are a few exceptions; for example [13, 8, 11, 4].

259

259-266

truthfully-answer” that encodes the thought process of
the children, and as a result can be used in planning.

(iii) Our formulation is a general one, and we illustrate
this by encoding another classical multi-agent reason-
ing scenario, the “Sum-N-Product Problem”.

(iv) Our use of ASP and reasoning about action techniques
allows us to apply various results from the single agent
domain, such as dealing with causal relations between
fluents, and with issues related to the frame, qualifi-
cation and ramification problems, to the multi-agent
domain.

2. ANSWER SET PROGRAMMING
A logic program in the language of AnsProlog (also known

as A-Prolog) [6, 3] is a set of rules of the form:

a0 ← a1, . . . , am,not am+1, . . . ,not an (1)

where 0 ≤ m ≤ n, each ai is an atom of a propositional lan-
guage2, and not represents negation-as-failure. A negation-
as-failure literal (or naf-literal) has the form not a, where
a is an atom. Given a rule of this form, the left and right
hand sides are called the head and body, respectively. A
rule may have either an empty head or an empty body, but
not both. Rules with an empty head are called constraints,
while those with an empty body are known as facts. A defi-
nite rule is a rule which does not contain naf-literals, and a
definite program is composed solely of definite rules.

Let X be a set of ground atoms. The body of a rule of
the form (1) is satisfied by X if {am+1, . . . , an}∩X = ∅ and
{a1, . . . , am} ⊆ X. A rule with a non-empty head is satisfied
by X if either its body is not satisfied by X, or a0 ∈ X. A
constraint is satisfied by X if its body is not satisfied by X.

Given an arbitrary program, Π, and a set of ground atoms,
X, the reduct of Π w.r.t. X, ΠX , is the definite program
obtained from the set of all ground instances of Π by:

1. deleting all the rules that have a naf-literal not a in the
body where a ∈ X, and

2. removing all naf-literals in the bodies of the remaining
rules.

A set of ground atoms X is an answer set of a program Π
if it satisfies the following conditions:

1. If Π is a definite program, then X is a minimal set of
atoms that satisfies all the rules in Π.

2. If Π is not a definite program, then X is the answer set
of ΠX . (Recall that ΠX is a definite program, and its
answer set is defined in the first item.)

A program Π is said to be consistent if it has an answer
set, and inconsistent otherwise. To make answer set pro-
gramming easier, Niemelä et al. [12] introduced a new type
of rule, called cardinality constraint rule:

A0 ← A1, . . . , Am,not Am+1, . . . ,not An (2)

where each Ai is a choice atom. A choice atom has the form
l{b1, . . . , bk}u where each bj is an atom, and l and u are
integers such that l ≤ u. Choice atoms can be also written
as l{p(X̄) : q(X̄)}u, where X̄ is a set of variables—this is
a short-hand for the choice atom l{p(s̄1, . . . , p(s̄k}u, where
{s̄1, . . . , s̄k} are all the ground instantiations of X̄ such that
q(X̄) is true. As with rules of type (1), rules of this from

2A rule with variables is viewed as a shorthand for the set
of its ground instances.

may have an empty head. A set of atoms X satisfies a choice
atom l{b1, . . . , bk}u if l ≤ |X∩{b1, . . . , bk}| ≤ u. The notion
of satisfaction of a rule with choice atoms can be extended
in the usual way. The semantics of logic programs which
contain such rules is given in [12].

The possibility of a program having multiple answer sets
(or no answer sets) has given rise to an alternative way
of solving problems via logic programming, called Answer
Set Programming (ASP) [10, 12]. This approach revolves
around writing programs whose answer sets have a one-to-
one correspondence with the solutions of the particular prob-
lem. Typically a ASP program consists of:

1. Rules to enumerate the possible solutions of a problem
as candidate answer sets;

2. Constraints to eliminate answer sets not representing so-
lutions of the problem.

We illustrate ASP with a simple example, capturing the ASP
solution to the problem of computing the 3-coloring of a
directed graph G. Let us assume we have the three colors
red, green, and blue, represented by the constant r, g, and
b. Let us also represent the vertices of G as the numbers
0, . . . , n. The program Π(G) consists of the following:

• A set of atoms edge(u, v) denoting the edges (u, v) of G;

• For each vertex u of G, a set of rules describing the
possible colorings of u:

1{color(u, g), color(u, b), color(u, r)}1

• For each edge (u, v) of G, a set of constraints encoding
the fact that u and v must be assigned different colors:

← color(u, r), color(v, r), edge(u, v)
← color(u, b), color(v, b), edge(u, v)
← color(u, g), color(v, g), edge(u, v)

It can be shown that for each graph G, (i) Π(G) is incon-
sistent if and only if the 3-coloring problem of G does not
have a solution; and (ii) if Π(G) is consistent, then the an-
swer sets of Π(G) have a one-to-one correspondence with
solutions of the 3-coloring problem of G.

3. USING ASP TO FIND KRIPKE MODELS

3.1 Encoding Agents Knowledge
We assume a finite, non-empty set of agents {1, . . . , n},

and a set of propositions describing various properties of the
world, referred to as fluents. The language, LKn, for repre-
senting and reasoning about the knowledge of our agents is
comprised of formulae built from our fluents, propositional
connectives, and a set of modal operators Ki, with one such
operator per agent. Formulae are defined as follows:

• Fluent formulae: a fluent formula is a propositional for-
mula built from fluents and Boolean operators.

• Knowledge formulae: a knowledge formula is (i) a fluent
formula, or (ii) a formula of the form Kiψ where ψ is a
knowledge formula, or (iii) a formula of the form ψ ∨ φ,
ψ ∧ φ, or ¬ψ, where ψ and φ are knowledge formulae.

In addition, for a non-empty set of agents G:

• EGψ denotes the set of formulae {Kiψ | i ∈ G}.
• CGψ denotes the set of formulae of the form Ek

Gψ,
where k ≥ 1 and Ek+1

G ψ = Ek
GEGψ.

Formulae in the language LKn allow us to specify:

• The real state of the world;

260

• The knowledge of an agent about the world—e.g., Kiψ
where ψ is a fluent formula;

• The knowledge of an agent about the knowledge of other
agents—e.g., KiKjψ, where ψ is a fluent formula;

• The common knowledge among agents—e.g., CGψ.

Example 1 (Muddy Children [5]). A father says to
his three children that at least one of them has mud on his
forehead. He then repeatedly asks “do you know whether
your forehead is muddy or not?” The first two times all
three children answer “no.” The third time however, they all
answer “yes.” It is known that the father and the children
can see and hear each other.

Let us denote the children by 1, 2, and 3. In addition, let
mi be a fluent encoding the fact that child i is muddy. Some
formulae in the language LK3 are: (i) mi (i is muddy);
(ii) K1m1 (child 1 knows that he is muddy); (iii) K1K2m2

(child 1 knows that child 2 knows that he is muddy); and
(iv) C1,2,3(m1 ∨ m2 ∨ m3) (it is common knowledge among
the children that at least one of them is muddy).

An LKn theory is a set of LKn formulas. The semantics
of LKn theories is given by Kripke structures:

Definition 1. A Kripke structure M , over a set of flu-
ents Φ, is a tuple (S, π,K1, . . . ,Kn) where S is a set of state
symbols, π is an interpretation which associates with each
state symbol a truth assignment to the fluents of Φ, and Ki

is a binary relation on S, for each 1 ≤ i ≤ n.

Given a Kripke structure M = (S, π,K1, . . . ,Kn), a state
s ∈ S, and a LKn-formula ϕ, the entailment relation (M, s) |=
ϕ is defined as follows:

• If ϕ is a fluent formula, then (M, s) |= ϕ iff s |= ϕ;
• (M, s) |= Kiϕ iff ∀t : (s, t) ∈ Ki ⇒ (M, t) |= ϕ;
• (M, s) |= ¬ϕ if and only if (M, s) �|= ϕ.

Kripke structures are often viewed as directed labeled
graphs, whose set of nodes is S, and whose edges are spec-
ified by Ki. Whenever we say that M ′ is obtained from M
by removing an edge between (s, t) labeled by i from M , we
remove (s, t) from Ki. Throughout this paper we will make
use of the standard notions of a path between two nodes in
M , and reachability without providing formal definitions.

Definition 2. Given a Kripke structure M , two states
s, t in M , and a set of agents G, we say that t is G-reachable
from s iff there is a path from s to t involving only edges
labeled by agents in G. We say that t is reachable from s if
t is G-reachable from t and G is the set of all the agents.

Different logic systems for reasoning about the knowledge
represented by a LKn theory have been introduced. Each
system uses the following two inference rules:

• R1: From ϕ and ϕ ⇒ ψ infer ψ
• R2: From ϕ infer Kiϕ

and satisfies some (or all) of the following axioms:

• P: all instances of axioms of propositional logic
• K: (Kiϕ ∧ Ki(ϕ ⇒ φ)) ⇒ Kiφ
• T: Kiϕ ⇒ ϕ
• 4: Kiϕ ⇒ KiKiϕ
• 5: ¬Kiϕ ⇒ Ki¬Kiϕ
• D: ¬Kifalse

The system S5 satisfies all of the above axioms with the
exception of (D) [9]. Many other logics can be defined by

removing some axioms among (T), (R), (4), and (5) from
S5, and/or adding (D) to it. Note that in the S5 system, the
binary relation Ki is reflexive, transitive, and symmetric.

3.2 Modeling Kripke Structures in ASP
Given a LKn theory T , we would like to compute a Kripke

structure M = (S, π,K1, . . . ,Kn), which is a model of T . In
this section, we will develop a program ΠI(T , m, k) whose
answer sets represent Kripke models of T with m states,
assuming they exist. Our approach here is analogous to
finding plans using ASP or SAT; in that case, the ASP or
SAT encodings are with respect to a given plan length m and
they find all plans of length m if such plans exist. In our
encoding m denotes the number of states, and k denotes the
number of reasoning steps.3 ΠI(T , m, 0) denotes our initial
structure.

Let us describe the ASP representation of ΠI(T , m, k).
The intuition guiding our encoding is to model the Kripke
structure as “existing at each time point.” The language of
the program ΠI(T , m, k) includes the following components:

• a set of atoms of the form fluent(F);
• a set of constants s1, . . . , sm, representing the names of

the possible states;
• a set of atoms of the form state(S, T), denoting the fact

that S is a state in the Kripke structure at step T ;
• a set of atoms of the form h(ϕ, S, T) denoting the fact

that the formula ϕ holds in the state S in the Kripke
structure present at step T . These atoms represent the
interpretation associated with each state (i.e., π);

• a set of atoms of the form r(A, S1, S2, T), which represent
the accessibility relations of the Kripke structure present
at step T . This states that (S1, S2) ∈ KA in the Kripke
structure at step T ;

• a set of atoms of the form t(S1, S2, T), used to repre-
sent the existence of a path from S1 to S2 in the Kripke
structure present at step T ;

• a set of atoms of the form real(S, T), used to denote the
real state of the world in the Kripke structure of step T .

We assume formulae to be built from fluents, propositional
connectives, and knowledge operators (in keeping with our
previous definition). In particular, the fact that a formula of
the form KAϕ holds in the current Kripke structure with re-
spect to a state S is encoded by atoms of the form k(A, ϕ, S, T).
The formulae ϕ which comprise our theory T are described
by atoms init(ϕ).

Let us now describe the rules of ΠI(T , m, 0). As our goal
is to generate Kripke structures which satisfy T , and the
states are given by facts of the form state(si, 0), we must
have a rule to generate the possible accessibility relations
Ki for our agents:4

0{r(A, S1, S2, 0) : state(S1, 0) : state(S2, 0)}1 ← agent(A) (3)

This rule states that there might be an edge labeled A from
S1 to S2. Depending on the application, we have rules to
ensure that our accessibility relations are symmetric, tran-
sitive, and reflexive (represented by the predicate r which

3This last parameter is added for use in the next section.
4In all the rules, A, F , L, and S, possibly with indices,
denote an agent, a fluent, a fluent literal, and a state, re-
spectively. We simplify the rules by removing the definition
of these variables in the right hand side of the rules.

261

stands for reachable):

r(A, S1, S2, 0) ← r(A, S1, S3, 0), r(A, S3, S2, 0) (4)

r(A, S1, S2, 0) ← r(A, S2, S1, 0) (5)

r(A, S, S, 0) ← (6)

This allows us to concisely define the predicate t as the
transitive closure of r:

t(S1, S2, T) ← r(A, S1, S2, T) (7)

t(S1, S2, T) ← t(S1, S3, T), t(S3, S2, T) (8)

Using the predicate h as a base, we can express the con-
ditions under which our knowledge formulae are satisfied
(n k(A, S, F, T) indicates that the formula KA(F) does not
hold w.r.t. state S in the Kripke structure at time T):

n k(A, S, F, T) ← r(A, S, S1, T), h(¬F, S1, T) (9)

n k(A, S,¬F, T) ← r(A, S, S1, T), h(F, S1, T) (10)

k(A, S, L, T) ← not n k(A, S, L, T) (11)

These rules describe the entailment relation (MT , S) |=
KAL, where MT is the Kripke structure generated by the
program and L is a fluent literal. The first rule states that
an agent A does not know if a fluent F is true with respect
to the state S if there is a state S1 accessible from S via A
where F is false. The second rule is symmetrical, testing the
knowledge of ¬F being true. The last rule states that if it
cannot be proven that A does not know the value of L, then
A knows the value of L.

We define h recursively to deal with the various types of
knowledge formulae:5

h(k(A, G), S, T) ← literal(G), k(A, S, G, T)

h(¬k(A, G), S, T) ← not k(A, S, G, T)

h(or(L1, L2), S, T) ← form(or(L1, L2)), h(L1, S, T)

h(or(L1, L2), S, T) ← form(or(L1, L2)), h(L2, S, T)

h(or(L1, L2, L3), S, T) ← form(or(L1, L2, L3)), h(L1, S, T)

h(or(L1, L2, L3), S, T) ← form(or(L1, L2, L3)), h(L2, S, T)

h(or(L1, L2, L3), S, T) ← form(or(L1, L2, L3)), h(L3, S, T)

h(neg c(L), S, T) ← form(L), t(S, S1, T),not h(L, S1, T)

h(c(L), S, T) ← form(L),not h(neg c(L), S, T)

This collection of rules extends the definition of the predi-
cate h to knowledge formulae and compound formulae. The
possible formulae are described by the predicate form; some
of the rules of form are:

literal(L) ← fluent(L)

literal(¬L) ← fluent(L)

form(L) ← literal(L)

form(k(A, G)) ← literal(G)

form(or(k(A1, G1), k(A2, G2))) ← literal(G1), literal(G2)

form(¬k(A, G)) ← literal(G)

form(or(L1, L2, L3)) ← literal(L1), literal(L2), literal(L3)

As we wish to generate Kripke structures which are models

5The encoding is tailored to meet the grounding requirement
of current ASP-solvers. It can be generalized to deal with
compound formulae using recursive formula representation.

of T , we need to enforce the following constraints:

real(S, T + 1) ← real(S, T) (12)

← real(S, 0), init(F),not h(F, S, 0) (13)

1{real(S, 0) : state(S, 0)}1 (14)

The second rule states that every formula of the theory T
must be satisfied with respect to the state designated as the
real world. The third rule states that one of the possible
states of the world is the real state of the world, and the
first rule asserts that the real world remains the same as
time progresses.

Example 2. Let T0 be the theory representing the Muddy
Children problem before the father’s announcement. The
knowledge of the three children can be represented by the
following formulae:

init(c(or(k(1, m(2)), k(1,¬m(2))))) (15)

init(c(or(k(1, m(3)), k(1,¬m(3))))) (16)

init(c(or(k(2, m(1)), k(2,¬m(1))))) (17)

init(c(or(k(2, m(3)), k(2,¬m(3))))) (18)

init(c(or(k(3, m(1)), k(3,¬m(1))))) (19)

init(c(or(k(3, m(2)), k(3,¬m(2))))) (20)

init(c(¬k(1, m(1)))) (21)

init(c(¬k(1,¬m(1))))) (22)

init(c(¬k(2, m(2))))) (23)

init(c(¬k(2,¬m(2))))) (24)

init(c(¬k(3, m(3))))) (25)

init(c(¬k(3,¬m(3))))) (26)

The formulae indicate that everyone knows that child 1
knows whether or not child 2 is muddy (formula (15)), and
whether or not child 3 is muddy (formula (16))), and that
child 1 does not know whether or not he is muddy (formulae
(21) and (22)). Similarly for children 2 and 3.

Let Π(0) be the program consisting of the rules (3)-(26)
and the set of eight states representing the eight possible
interpretations of the set of fluents {m(1), m(2), m(3)}. We
can prove the following property about the program Π(0):

Proposition 1. Π(0) is consistent and has eight answer
sets; each corresponds to Fig. 1 with the only difference being
the choice of the real state of the world.

One of the answer sets of Π(0) is shown graphically in Fig.
1, displaying the accessibility relations of the three children
within the model (the three digits in each state encode the
value of the three fluents, where 1 denotes true and 0 denotes
false). This model also coincides with the model represented
by most texts discussing this famous problem.

4. THE MUDDY CHILDREN PROBLEM
We are now ready to discuss the Muddy Children problem

in greater detail. The action of the father announcing that
there is at least one muddy child among the three can be
encoded by ensuring that the formula ϕ

.
= C{1,2,3}(m1∨m2∨

m3) is true. This has the effect of enabling the children to
refine their knowledge, possibly removing unnecessary states
and edges. We can encode this in ASP as follows—where occ

262

111

011 001

000010

110 100

101
1

2

1

1

2

2

2
3

3 3

3

1

Figure 1: Kripke Model (Step 0)

is a binary predicate that encodes action occurrences at the
various steps:

occ(announce fact(ϕ), 0) ←
state(S, 1) ← occ(announce fact(ϕ), 0), state(S, 0), h(ϕ, S, 0)

r(A, S1, S2, 1) ← r(A, S1, S2, 0), state(S1, 1), state(S2, 1)

The second rule above encodes the fact that the states at
step 1 are those states from step 0 where ϕ holds. The
third rule ensures that the edges at step 1 are those edges
from step 0 connecting states that are still present at step 1.
This is reminiscent of the ASP encoding of effect axioms in
reasoning about actions, except that the states here behave
like fluents in traditional reasoning about actions. In situa-
tion calculus, the second rule above would be expressed as
state(S, s0)∧ϕ(S, s0) ⇒ state(S, do(announce fact(ϕ), s0)).

Let R1 be the set of rules above and Π(1) = Π(0) ∪ R1.
Computing the answer sets of this program, we obtain the
Kripke structure at step 1 shown in Fig. 2.

111

011 001

000010

110 100

101
1

2

1

1

2

2

2
3

3 3

3

1

Figure 2: After Father’s Announcement (Step 1)

The program has seven answer sets which correspond to
the seven possible real-state of the world. However, the re-
sulting Kripke structure is identical across answer sets. This
certainly is intuitive since the Kripke structure in step 0 does
not depend on the real-state of the world which implies that
the Kripke structure in step 1 should not depend on it. The
dotted edges are those edges that have been removed from
the initial structure (Fig. 1).

The father continues with the action ask, which in effect
does not change the knowledge of any child. This is encoded
by the set of rules R2:

occ(ask, 1) ←
state(S, 2) ← occ(ask, 1), state(S, 1)

r(A, S1, S2, 2) ← r(A, S1, S2, 1), state(S1, 2), state(S2, 2)

Let Π(2) = Π(1) ∪ R2. Π(2) has as many answer sets as
Π(1), describing the same Kripke structures.

The children then reply“no” to their father. This is equiv-
alent to the children announcing that they do not know

whether or not they are muddy. This is encoded by the
action announce k(A, false) indicating that agent A does
not know m(A). This action has the following effects:

• The states of the Kripke structure are not affected.

• The knowledge formulae C{1,2,3}(¬KAmA) and
C{1,2,3}(¬KA¬mA) are true.

In order to compute the subsequent Kripke structure we use
the following set of rules R3:

state(S, 3) ← state(S, 2) (27)

bad(S1, S2, 2) ← real(S, 2), (28)

t(S, S1, 2), S1 �= S2, r(A1, S1, S2, 2),

occ(announce k(A2, false), 2),

not h(¬k(A2, m(A2)), S2, 2)

bad(S1, S2, 2) ← real(S, 2), (29)

t(S, S1, 2), S1 �= S2, r(A1, S1, S2, 2),

occ(announce k(A2, false), 2),

not h(¬k(A2,¬m(A2)), S2, 2)

bad(S1, S2, 2) ← real(S, 2), (30)

t(S, S1, 2), S1 �= S2, r(A1, S1, S2, 2),

occ(announce k(A2, true), 2),

h(¬k(A2, m(A2)), S2, 2), h(¬k(A2,¬m(A2)), S2, 2)

bad(S1, S2, 2) ← bad(S2, S1, 2) (31)

r(A, S1, S2, 3) ← r(A, S1, S2, 2),not bad(S1, S2, 2) (32)

The rules (28)-(29) identify links labeled A1 from S1 to
S2 which, if present, will lead to violating the validity of
the formulae C{1,2,3}(¬KAmA) and C{1,2,3}(¬KA¬mA)—
because they link to states where KAmA or KA¬mA are
satisfied. The rule (30) takes care of the case when A2 an-
nounces that it knows the value of mA2 . Thus, atoms of the
form bad(S1, S2, 2) identify links that need to be removed
from the Kripke structure to enable the satisfaction of the
common knowledge derived from the announcement. Rule
(31) indicates that bad(S1, S2, 2) is symmetric and rule (32)
creates the new Kripke structure excluding the bad links.

Let Π(3) = Π(2) ∪ R3. This program also has seven an-
swer sets as Π(2). However, the Kripke structure depends
on the real state of the world. If the real state corresponds
to one of the four possible states with more than one chil-
dren muddy, the Kripke structure consists of self-loops and
three links (Fig. 3, left)—this is the case commonly consid-
ered in several publications related to this problem. For the
other three cases, the structure consists of only self-loops
(Fig. 3, right). The red (dashed) links are removed from
the structure after the announcements are made.

Real State: 111/011/110/101 Real State: 001/100/010

111

011 001

000010

110 100

101
1

2

1

1

2

2

2
3

3 3

3

1

111

011 001

000010

110 100

101
1

2

1

1

2

2

2
3

3 3

3

1

Figure 3: After Children First Answer (Step 3)

263

Repeating this pair of actions (ask, announce) a second
time yields a Kripke structure whose states have only self-
loops in all answer sets. This allows the children to affirma-
tively answer their father’s question.

5. ASK AND TRUTHFULLY ANSWERED
The encoding presented in the previous section relies on

determining Kripke structures that satisfy formulae obtained
from observations of the behavior of the agents. Intuitively,
the encoding acts as an external observer that is recording
the actions and responses of the participating agents.

Let us now present an alternative encoding, where the
process of asking and answering the question is not passively
observed; instead, the behavior of the agents is encoded and
the answers are automatically computed from the current
Kripke structure. The encoding will allow us to solve the
general muddy children problem:

Suppose there are n children and the father comes
and announce that at least one of them is muddy.
He then repeatedly asks “do you know whether
you are muddy?” until all children say “yes.”
Prove that if there are exactly � (� ≤ n) children
who are muddy, the father has to ask exactly �
questions before all muddy children say “yes.”

For simplicity, we will continue to illustrate the program
with n = 3. We will also continue using the representation
developed in the previous section. The program simulates
the conversation between the father and the children, auto-
matically computing the children’s responses from the cur-
rent Kripke structure. We refer to this encoding as Ask and
Truthfully Answer.

5.1 Children Observing the World
The first stage of the encoding corresponds exactly to the

collection of rules we denoted with Π(0) earlier—these rules
capture the fact that each child can see the other children.

It is interesting to observe that if we are interested in
studying what knowledge each child holds:

hreal(F, T) ← real(S, T), h(F, S, T)

we discover that each answer set contains hreal(k(1, m(2)), 0),
hreal(k(1, m(3)), 0), hreal(k(2, m(1)), 0), hreal(k(2, m(3)), 0),
hreal(k(3, m(1)), 0), and hreal(k(3, m(2)), 0), if the real-state
of the world is 111. This confirms that each child is correctly
seeing the other children.

5.2 Father’s Initial Announcement
The father produces the initial announcement; as before,

we capture this using an initial fact of the form:

occ(announce fact(ϕ), 0) (33)

(here, ϕ is or(m(1), m(2), m(3))). We are interested in
maintaining only states that satisfy the announced facts:

state(S, T+1) ← occ(announce fact(ϕ), T), h(ϕ, S, T)
(34)

while we maintain all links that connect states that are
maintained in the structure:

r(A, S1, S2, T+1) ← state(S1, T+1), state(S2, T+1), (35)

occ(announce fact(ϕ), T), r(A, S1, S2, T)

5.3 Asking and Answering Questions
The occurrences of ask questions, denoted by occ(ask, T),

do not have any effect on the structure:

state(S, T + 1) ← state(S, T), occ(ask, T) (36)

r(A, S1, S2, T + 1) ← agent(A), state(S1, T + 1), (37)

state(S2, T + 1), occ(ask, T), r(A, S1, S2, T)

On the other hand, each occurrence of an ask question
triggers the generation of a reply, in the form of instances
of announce k actions. The actual formula reported will be
determined by each child based on their observations, which
are relative to the real state of the world. Note that, even
though the children do not know the real world, their an-
swers are based on their observations about the real world.
To evaluate any conclusion of the type Kiϕ about agent i,
one needs to evaluate ϕ with respect to the set of worlds
the agent i considers possible. These worlds are exactly
the world accessible from the real world using the accessi-
bility relation of agent i. Thus in our encoding, the child
answers yes if (MT , real) |= Kimi ∨ Ki¬mi, while it re-
sponds no if (MT , real) |= ¬Kimi ∧ ¬Ki¬mi, where MT

denotes the Kripke structure at step T . The first situa-
tion leads to announce k(i, true) while the second leads to
announce k(i, false). The generation of these responses is
described by the following rules. In this sense, we can say
that the child answers the question truthfully.

occ(announce k(A, true), T) ← real(S, T), (38)

occ(ask, T−1), h(k(A, m(A)), S, T)

occ(announce k(A, true), T) ← real(S, T), (39)

occ(ask, T−1), h(k(A,¬m(A)), S, T)

occ(announce k(A, false), T) ← real(S, T), (40)

occ(ask, T−1), h(¬k(A, m(A)), S, T),

h(¬k(A,¬m(A)), S, T)

In turn, the father will keep asking as long as one of the
children says that he does not know whether he is muddy or
not.

occ(ask, T + 1) ← occ(announce k(A, false), T) (41)

The Kripke structure will be updated as a consequence
of the responses produced by the children. The update is
used to refine the knowledge of the children—this is modeled
by removing links that represent incorrect knowledge of the
child. This is captured by a predicate bad(S1, S2, T), which
is true if the following conditions are satisfied:

• S1 and S2 are distinct states reachable from the real
state of the world;

• There is a link between S1 and S2;

• There is an agent A, who announces ϕ, and (MT , S2) �|=
KAϕ.

This is captured by the rules similar to the rules (28)-(31)
presented earlier, where the last parameter of the predicate
bad(S1, S2, 2) is replaced by the step parameter T . Let Π(k)
be the program consisting of

• Π(1) (rules (3)-(26)) and R1 for generating the initial
Kripke structure and reasoning about the announce-
ment at the beginning of the story;

• The rules (36)-(37) for reasoning about the effects of
the action ask where T < k;

264

• The rules (38)-(40) and (41) where T < k for generat-
ing action occurrences;

• The rules (27)-(32) where 2 and 3 are replaced by T −1
and T with T < k, respectively, for reasoning about
the effects of the actions of announcing knowledge of
the children.

We can prove the following properties of the program Π(k).

Proposition 2. Let us consider the muddy children prob-
lem with n children with exactly � muddy children. Every
answer set M of the program Π(k), with k ≥ 2n + 1:

• contains a unique atom of the form real(s, 0);

• contains occ(announce k(a, false), i) for i = 2t < 2�
and a such that h(m(a), s, 0) ∈ M ; and

• contains occ(announce k(a, true), 2�) for every a such
that h(m(a), s, 0) ∈ M .

The first item corresponds to the fact that there is only one
real state of the world in each answer set. The second item
indicates that all muddy children do not know whether they
are muddy or not before the father finishes with the �th

question. The third item corresponds to the fact that, after
the father finishes with the �th question, all muddy children
know whether they are muddy or not.

The following atoms are extracted from an answer set of
Π(7) for the case n = 3 and the real state of the world is
110 (child 1 and 2 are muddy, 3 is clean):

occ(announce_fact(or(m(1),m(2),m(3))),0)
real(2) occ(ask,1) occ(ask,3) occ(ask,5)
occ(announce_k(1,false),2) occ(announce_k(2,false),2)
occ(announce_k(3,false),2) occ(announce_k(1,true),4)
occ(announce_k(2,true),4) occ(announce_k(3,false),4)
occ(announce_k(1,true),6) occ(announce_k(2,true),6)
occ(announce_k(3,true),6)

6. SUM-AND-PRODUCT
The previous section illustrates an approach to reasoning

about knowledge in a multi-agent system where agents an-
nounce their knowledge or facts to the whole community. In
this approach, the act of exchanging information between
agents are recorded as actions (e.g., asking and responding
with a knowledge fact). In the muddy children problem, the
Kripke structures after the execution of an action depends
solely on the Kripke structure before the execution of the
action. The approach relies on this fact and provides gen-
eral rules for dealing with two types of actions, the action
of announcing a fact and the action of announcing a knowl-
edge formula. In this section, we show that the proposed
approach can be generalized to deal with problems where
this dependence does not hold. We use the well-known sum-
and-product problem to illustrate this point.

An agent chooses two numbers 1 < x < y such that
x + y ≤ 100. The sum x + y is communicated to agent s
while the product x · y is communicated to agent p. These
communications are private, and the agents are tasked with
discerning the values of x and y. The following conversation
takes place between the two agents:

a. p states that it does not know the numbers x, y

b. s indicates that it already knew this fact

c. p states that now it knows the two numbers x, y

d. s states that now it knows the two numbers x, y as well.

We wish to determine the values of x, y discovered by the
agents.

It is easy to see that this problem only deals with the
knowledge of the two agents involved; our objective is to
determine Kripke structures that represent a correct model
of the knowledge of the agents at the different steps in the
story. In this sense, it is similar to the muddy children prob-
lem. The key difference between these problems lies in the
fact that the announcement (b) refers to the state of knowl-
edge of s with respect to the same initial Kripke structure
the announcement (a) refers to.

We will now apply our strategy to solve the sum-and-
product problem, which we refer to as Γ. The language of
Γ contains

• Rules to declare that each state is of the form num(X, Y),
i.e., each state is a pair of numbers;

• Rules to define the fluents x(X), y(Y), sum(Z), and
prod(P), respectively denoting the fact that X is the
value of x, Y is the value of y, Z is the sum of the two
numbers encoding the state, and P is the product of the
two numbers encoding the state;

• A set of atoms of the form state(S, T), denoting the fact
that S is a state in the Kripke structure at step T .

Additionally, the language will use atoms of the form h(ϕ, S, T),
r(A, S1, S2, T), real(S, T), and t(S1, S2, T), whose meaning
is the same as in the previous section.

The rules describing the states and the choices of x, y are:

state(num(X, Y), T) ← 1 < X, X < Y, X + Y < 101

h(x(X), num(X, Y), T) ←
h(y(Y), num(X, Y), T) ←
h(sum(S), num(X, Y), T) ← S = X + Y

h(prod(P), num(X, Y), T) ← P = X ∗ Y

We omit the corresponding rules to assert the truth value
of the negation of these fluents for brevity.

The initial Kripke structure could be generated in the
same way as in the previous section, using the rules (3)-(6).
Here, we simplify these rules to the following rules:

r(s, num(X, Y), num(X1, Y 1), 0) ← X + Y = X1 + Y 1,

state(num(X, Y), 0), state(num(X1, Y 1), 0)

r(p, num(X, Y), num(X1, Y 1), 0) ← X ∗ Y = X1 ∗ Y 1,

state(num(X, Y), 0), state(num(X1, Y 1), 0)

As before, we assume that the real state of the world is
denoted by:

1{real(S, 0) : state(S, 0)}1
Finally, we need to capture the property that an agent

knows the value of the two numbers—i.e., the agent can see
only one possible state. We will define this as:

s knows ≡
_

(x,y)∈S
Ks(x(X) ∧ y(Y))

for the s agent and

p knows ≡
_

(x,y)∈S
Kp(x(X) ∧ y(Y))

for the p agent.
To complete our representation, we need to represent the

sequence of communications between the agents in this prob-

265

lem. As we have alluded to it before, there is a slight dif-
ference between the sequence of exchanges in this problem
and those of the muddy children problem. In the case of the
muddy children problem, the announcement are encoded as
assertions on the current Kripke structure; in the case of the
sum and product problem, some of the announcements are
referred to a Kripke structure that is independently seen by
the agents (i.e., the original Kripke structure). We therefore
generalize the action of announcing a fact by attaching to it
a time reference. We will use an announcement of the form

announce fact(ϕ, T)

to indicate a public announcement referring to the Kripke
structure at the time step T . States not satisfying ϕ at step
T are not acceptable in the Kripke structure at the current
time.

The handling of the new type of announcements is en-
coded as follows:

state(S, T + 1) ← state(S, T),

occ(announce fact(F, T1), T), h(F, S, T1)

r(A, S1, S2, T + 1) ← state(S1, T + 1), state(S2, T + 1),

occ(announce fact(F, T1), T), r(A, S1, S2, T)

These two rules are similar to the rules (34)-(35).
The history of the sum and product problem is then re-

duced to the following occurrence facts:

occ(announce fact(0,¬p knows), 0)

occ(announce fact(0, k(s, p knows)), 1)

occ(announce fact(2, p knows), 2)

occ(announce fact(3, s knows), 3)

It can be shown that the program Γ has a single answer set,
which contains the fact real(num(4, 13), 0). This implies
that (4, 13) is a solution of the problem.

7. DISCUSSION AND CONCLUSION
In this paper, we used techniques from reasoning about

actions and answer set programming to model multi-agent
systems involving agents with knowledge about other agents’
knowledge. Since answer set programming (ASP) is a logic
as well as a programming paradigm, we were able to for-
mally state and prove (proofs have not been included due
to space limitations) the correctness of our executable en-
codings. We illustrated our approach with respect to two
well-known examples: the muddy children problem and the
sum-and-product problem. Our approach led to two new
aspects: (i) Our ASP specification about the initial Kripke
model is able to generate an initial Kripke structure; and
(ii) We formulated a new kind of action which we called
“ask and truthfully answer” with which we could encode the
reasoning done by the children in the muddy children sce-
nario. Both aspects are valuable when planning as one needs
to start with the initial “state” and deal with actions such
as “ask and truthfully answer” which are similar to sensing
actions studied in the past. In addition, our formulation can
identify the real state of the world given a history of action
occurrences (using a program similar to Π(2) or Γ).

In terms of related work, reasoning about agents’ knowl-
edge using Kripke structures has been extensively studied in

the literature (e.g., [2, 1, 5, 15]). Our logic programming en-
coding follows the general idea of refining Kripke structure
based on public announcements (e.g., as in [2]). In essence,
we use ASP to encode the transition between Kripke models
defined as follows:

Let M = (S, π,K1, . . . ,Kn) be a Kripke structure, s0 be
the real state of the world, and α be an announcing action.
The Kripke structure, M ′ = (S ′, π,K′

1, . . . ,K′
n), resulting

from the execution of an announcement can be computed as
follows:

• For A = announce fact(ϕ,) where ϕ is a fluent formula:

◦ if s0 �|= ϕ then M ′ is undefined; and

◦ if s0 |= ϕ then S ′ = {s | s ∈ S, s |= ϕ}, K′
A =

{(s, s′) | (s, s′) ∈ KA, s ∈ S ′, s′ ∈ S ′}.
• For A = announce k(ϕ,) where ϕ is a knowledge for-

mula, then S ′ = S, K′
A = KA \ {(s0, s

′) | (M, s′) �|= ϕ}.
Overall, the novelty of our work is in terms of the use

of ASP and reasoning about action techniques, in writing
formulations that computes the initial Kripke model, and in
formulating the action “ask and truthfully answer”.

8. REFERENCES
[1] A. Baltag, L.S. Moss. Logics for Epistemic Programs.

Synthese, 139(2):165–224, 2004.

[2] A. Baltag, L.S. Moss, S. Solecki. The logic of public
announcements, common knowledge, and private
suspicions. 7th TARK, 1998.

[3] C. Baral. Knowledge representation, reasoning and
declarative problem solving. Cambridge U Press. 2003.

[4] C. Baral, E. Pontelli, T. Son. Modeling multi-agent
domains in an action language. In LPNMR, 2009.

[5] R. Fagin, J. Halpern, Y. Moses, and M. Vardi.
Reasoning about Knowledge. MIT press, 1995.

[6] M. Gelfond, V. Lifschitz. The Stable Model Semantics
for Logic Programming. ICLP/SLP 1988:1070-1080

[7] J. Gerbrandy, W. Groeneveld. Reasoning about
Information Change. Journal of logic, language and
information, 1997, 6, 147-169.

[8] H. Ghaderi, H.J. Levesque, Y. Lespèrance. Towards a
logical theory of coordination and joint ability. In
AAMAS, pp. 81, 2007.

[9] J. Y. Halpern. A theory of knowledge and ignorance for
many agents. J. Log. Comput., 7(1):79–108, 1997.

[10] V. Marek and M. Truszczyński. Stable models and an
alternative logic programming paradigm. The Logic
Programming Paradigm, Springer, 1999.

[11] J.-J.Ch. Meyer. Dynamic logic for reasoning about
actions and agents. Logic Based AI, 281–314. 2000.

[12] I. Niemelä. Logic programming with stable model
semantics as a constraint programming paradigm.
AMAI, 25(3,4):241–273, 1999.

[13] S. Shapiro, Y. Lespèrance, H.J. Levesque. The
cognitive agents specification language and verification
environment for multiagent systems. AAMAS, 2002.

[14] H. P. van Ditmarsch, W. van der Hoek and B. P.
Kooi. Dynamic epistemic logic with assignment.
AAMAS’2005.

[15] H. van Ditmarsch, W. van der Hoek, B. Kooi.
Dynamic Epistemic Logic. Springer Verlag, 2008.

266

